Go to file
Robert Payne c5bab635ec Re-organized Project 2015-03-24 11:39:41 +13:00
CodeSnippets Rename to Snap 2015-01-09 09:43:43 +13:00
Snap OSX Re-organized Project 2015-03-24 11:39:41 +13:00
Snap OSXTests Re-organized Project 2015-03-24 11:39:41 +13:00
Snap.xcodeproj Re-organized Project 2015-03-24 11:39:41 +13:00
Snap.xcworkspace Re-organized Project 2015-03-24 11:39:41 +13:00
Source Re-organized Project 2015-03-24 11:39:41 +13:00
Tests Re-organized Project 2015-03-24 11:39:41 +13:00
.gitignore Updated gitignore 2015-02-14 23:02:01 +13:00
CHANGELOG.md Updated changelog 2015-02-17 11:13:24 +13:00
LICENSE Rename to Snap 2015-01-09 09:43:43 +13:00
README.md Re-organized Project 2015-03-24 11:39:41 +13:00
Snap.podspec Update build number 2015-03-24 11:08:06 +13:00

README.md

Snap

Snap is a light-weight layout framework which wraps AutoLayout with a nicer syntax. Snap has its own layout DSL which provides a chainable way of describing your NSLayoutConstraints which results in layout code that is more concise and readable. Snap supports both iOS and OS X.

Snap uses some Swift-only features like function overloading, so it cannot be used from Objective-C. Because of this weve chosen to swap prefixes from Masonrys mas_ to snp_ so you can use both Masonry and Snap in the same project.

Requirements

  • iOS 7.0+ / Mac OS X 10.9+
  • Xcode 6.1

Installation Cocoapods

  1. Add Snap as a line in your Podfile pod 'Snap'
  2. Run pod install
  3. Add import Snap to your AppDelegate.swift

Cocoapods installations only work for iOS 8.0 and OS X 10.10 or higher deployment targets.

Installation Carthage

Carthage is supported by adding github 'Masonry/Snap' to your Cartfile.

Carthage installations only work for iOS 8.0 and OS X 10.10 or higher deployment targets.

What's wrong with NSLayoutConstraints?

Under the hood Auto Layout is a powerful and flexible way of organising and laying out your views. However creating constraints from code is verbose and not very descriptive. Imagine a simple example in which you want to have a view fill its superview but inset by 10 pixels on every side

let superview = self;

let view1 = UIView()
view1.setTranslatesAutoresizingMaskIntoConstraints(false)
view1.backgroundColor = UIColor.greenColor()
superview.addSubview(view1)

let padding = UIEdgeInsetsMake(10, 10, 10, 10)

superview.addConstraints([
  NSLayoutConstraint(
    item: view1,
    attribute: NSLayoutAttribute.Top,
    relatedBy: NSLayoutRelation.Equal,
    toItem: superview,
    attribute: NSLayoutAttribute.Top,
    multiplier: 1.0,
    constant: padding.top
  ),
  NSLayoutConstraint(
    item: view1,
    attribute: NSLayoutAttribute.Left,
    relatedBy: NSLayoutRelation.Equal,
    toItem: superview,
    attribute: NSLayoutAttribute.Left,
    multiplier: 1.0,
    constant: padding.left
  ),
  NSLayoutConstraint(
    item: view1,
    attribute: NSLayoutAttribute.Bottom,
    relatedBy: NSLayoutRelation.Equal,
    toItem: superview,
    attribute: NSLayoutAttribute.Bottom,
    multiplier: 1.0,
    constant: -padding.bottom
  ),
  NSLayoutConstraint(
    item: view1,
    attribute: NSLayoutAttribute.Right,
    relatedBy: NSLayoutRelation.Equal,
    toItem: superview,
    attribute: NSLayoutAttribute.Right,
    multiplier: 1.0,
    constant: -padding.right
  )
])

Even with such a simple example the code needed is quite verbose and quickly becomes unreadable when you have more than 2 or 3 views. Another option is to use Visual Format Language (VFL), which is a bit less long winded. However the ASCII type syntax has its own pitfalls and its also a bit harder to animate as NSLayoutConstraint.constraintsWithVisualFormat returns an array.

Prepare to meet your Maker!

Heres the same constraints created using ConstraintMaker

let padding = UIEdgeInsetsMake(10, 10, 10, 10)

view1.snp_makeConstraints { make in
  make.top.equalTo(superview.snp_top).with.offset(padding.top) // with is an optional semantic filler
  make.left.equalTo(superview.snp_left).with.offset(padding.left)
  make.bottom.equalTo(superview.snp_bottom).with.offset(-padding.bottom)
  make.right.equalTo(superview.snp_right).with.offset(-padding.right)
}

Or even shorter

view1.snp_makeConstraints { make in
  make.edges.equalTo(superview).with.insets(padding)
  return // this return is a fix for implicit returns in Swift and is only required for single line constraints
}

Also note in the first example we had to add the constraints to the superview superview.addConstraints. Snap however will automagically add constraints to the appropriate view.

Snap will also call view1.setTranslatesAutoresizingMaskIntoConstraints(false) for you.

Not all things are created equal

.equalTo equivalent to NSLayoutRelation.Equal

.lessThanOrEqualTo equivalent to NSLayoutRelation.LessThanOrEqual

.greaterThanOrEqualTo equivalent to NSLayoutRelation.GreaterThanOrEqual

These three equality constraints accept one argument which can be any of the following:

1. ViewAttribute

make.centerX.lessThanOrEqualTo(view2.snp_left)
ViewAttribute NSLayoutAttribute
view.snp_left NSLayoutAttribute.Left
view.snp_right NSLayoutAttribute.Right
view.snp_top NSLayoutAttribute.Top
view.snp_bottom NSLayoutAttribute.Bottom
view.snp_leading NSLayoutAttribute.Leading
view.snp_trailing NSLayoutAttribute.Trailing
view.snp_width NSLayoutAttribute.Width
view.snp_height NSLayoutAttribute.Height
view.snp_centerX NSLayoutAttribute.CenterX
view.snp_centerY NSLayoutAttribute.CenterY
view.snp_baseline NSLayoutAttribute.Baseline

2. UIView/NSView

if you want view.left to be greater than or equal to label.left :

// these two constraints are exactly the same
make.left.greaterThanOrEqualTo(label)
make.left.greaterThanOrEqualTo(label.snp_left)

3. Strict Checks

Auto Layout allows width and height to be set to constant values. if you want to set view to have a minimum and maximum width you could pass a primitive to the equality blocks:

// width >= 200 && width <= 400
make.width.greaterThanOrEqualTo(200)
make.width.lessThanOrEqualTo(400)

However Auto Layout does not allow alignment attributes such as left, right, centerY etc to be set to constant values. So if you pass a primitive for these attributes Snap will turn these into constraints relative to the views superview ie:

// creates view.left <= view.superview.left + 10
make.left.lessThanOrEqualTo(10)

You can also use other primitives and structs to build your constraints, like so:

make.top.equalTo(42)
make.height.equalTo(20)
make.size.equalTo(CGSizeMake(50, 100))
make.edges.equalTo(UIEdgeInsetsMake(10, 0, 10, 0))
make.left.equalTo(view).offset(UIEdgeInsetsMake(10, 0, 10, 0))

Learn to prioritize

.prority allows you to specify an exact priority

.priorityHigh equivalent to UILayoutPriority.DefaultHigh

.priorityMedium is half way between high and low

.priorityLow equivalent to UILayoutPriority.DefaultLow

Priorities are can be tacked on to the end of a constraint chain like so:

make.left.greaterThanOrEqualTo(label.snp_left).with.priorityLow();

make.top.equalTo(label.snp_top).with.priority(600);

Composition, composition, composition

Snap also gives you a few convenience methods which create multiple constraints at the same time.

edges

// make top, left, bottom, right equal view2
make.edges.equalTo(view2);

// make top = superview.top + 5, left = superview.left + 10,
//      bottom = superview.bottom - 15, right = superview.right - 20
make.edges.equalTo(superview).insets(UIEdgeInsetsMake(5, 10, 15, 20))

size

// make width and height greater than or equal to titleLabel
make.size.greaterThanOrEqualTo(titleLabel)

// make width = superview.width + 100, height = superview.height - 50
make.size.equalTo(superview).offset(CGSizeMake(100, -50))

center

// make centerX and centerY = button1
make.center.equalTo(button1)

// make centerX = superview.centerX - 5, centerY = superview.centerY + 10
make.center.equalTo(superview).offset(CGPointMake(-5, 10))

You can chain view attributes for increased readability:

// All edges but the top should equal those of the superview
make.left.right.and.bottom.equalTo(superview)
make.top.equalTo(otherView)

Hold on for dear life

Sometimes you need modify existing constraints in order to animate or remove/replace constraints. In Snap there are a few different approaches to updating constraints.

1. References

You can hold on to a reference of a particular constraint by assigning the result of a constraint make expression to a local variable or a class property. You could also reference multiple constraints by storing them away in an array.


var topConstraint: Constraint? = nil

...

// when making constraints
view1.snp_makeConstraints { make in
  self.topConstraint = make.top.equalTo(superview).with.offset(padding.top)
  make.left.equalTo(superview).with.offset(padding.left)
}

...
// then later you can call
self.topConstraint.uninstall()

2. snp_remakeConstraints

snp_remakeConstraints is similar to snp_makeConstraints, but will first remove all existing constraints installed by Snap.

func changeButtonPosition() {
  self.button.snp_remakeConstraints { make in 
    make.size.equalTo(self.buttonSize)

    if topLeft {
      make.top.left.equalTo(10)
    } else {
      make.bottom.equalTo(self.view).offset(-10)
      make.right.equalTo(self.view).offset(-10)
    }
  }
}

Code Snippets

Copy the included code snippets to ~/Library/Developer/Xcode/UserData/CodeSnippets to write your snap closures at lightning speed!

snp_make -> <view>.snp_makeConstraints { make in <code> }

snp_remake -> <view>.snp_remakeConstraints { make in <code> }

TODO

  • Eye candy
  • Example projects
  • Tests